

AutoWIG: Automatic Wrapper and Interface Generator

High-level programming languages, such as Python and R, are popular among scientists.
They are concise, readable, lead to rapid development cycles, but suffer from performance drawback compared to compiled language.
However, these languages allow to interface C, C++ and Fortran code.
In this way, most of the scientific packages incorporate compiled scientific libraries to both speed up the code and reuse legacy libraries.
While several semi-automatic solutions and tools exist to wrap these compiled libraries, the process of wrapping a large library is cumbersome and time consuming.
AutoWIG is a Python library that wraps automatically compiled libraries into high-level languages.
Our approach consists in parsing C++ code using the LLVM/Clang technologies and generating the wrappers using the Mako templating engine.
Our approach is automatic, extensible, and applies to very complex C++ libraries, composed of thousands of classes or incorporating modern meta-programming constructs.

Summary

	Status:	[image: Travis] [https://travis-ci.org/StatisKit/AutoWIG] [image: Coveralls] [https://coveralls.io/github/StatisKit/AutoWIG?branch=master] [image: Landscape] [https://landscape.io/github/StatisKit/AutoWIG/master] [image: Read the Docs] [http://AutoWIG.readthedocs.io]

	License:	see License section

	Authors:	see Authors section

Installation

	Test it with Docker

	Installation from binaries

	Installation from source code

Documentation

	User guide
	Problem setting

	Automating the process

	Examples
	Wrapping a basic library

	Wrapping a subset of a very large library

	Wrapping a template library

	Frequently Asked Questions
	How to use AutoWIG on Windows or MacOS ?

License

AutoWIG is distributed under the CeCILL license.

Note

CeCILL license is LGPL compatible.

Authors

	Pierre Fernique

	Christophe Pradal

Test it with Docker

Note

Docker [Mer14] is an open-source project that automates the deployment of Linux applications inside software containers.

We provide Docker images to enable to run AutoWIG on various platforms (in particular Windows and MacOS).
For the installation of Docker, please refers to its documentation [https://www.docker.com/products/overview].
Then, you can use the statiskit/autowig Docker image to run AutoWIG:

$ docker run -i -t -p 8888:8888 statiskit/autowig

A list of all available images can be found here [https://hub.docker.com/r/statiskit/autowig/tags/].
The image tagged latest is unstable, it could be preferable to use the one attached with the AutoWIG paper submitted in Journal of Computational Science (tagged v1.0.0) as follows:

$ docker run -i -t -p 8888:8888 statiskit/autowig:v1.0.0

For convenience, examples are presented in Jupyter notebooks.
You can therefore proceed – in the container’s terminal – as follows to run examples:

	Launch the Jupyter notebook with the following command

$ jupyter notebook --ip='*' --port=8888 --no-browser

	Copy the URL given in the container’s terminal and paste it in your browser.
This URL should looks like http://localhost:8888/?token=/[0-9a-fA-F]+/.

	Click on the notebooks you want to run (denoted by *.ipynb) and then
click on Run All item of the Cell top menu bar.

Warning

For some systems as Ubuntu, Docker requires root permissions (see this page [https://docs.docker.com/engine/installation/linux/linux-postinstall/] for more information).

Installation from binaries

In order to ease the installation of the AutoWIG software on multiple operating systems, the Conda package and environment management system is used.
To install Conda, please refers to its documentation [http://conda.pydata.org/docs] or follow the installation instructions given on the StatisKit documentation [https://statiskit.rtfd.io].
Once Conda installed, you can install AutoWIG binaries into a special environment that will be used for wrapper generation by typing the following command line in your terminal:

$ conda create -n autowig python-autowig python-clanglite python-scons python-dev libdev -c statiskit -c conda-forge

Warning

When compiling wrappers generated by AutoWIG in its environment some issues can be encountered at compile time or run time (from within the Python interpreter) due to compiler or dependency incompatibilies.
This is why it is recommended to install AutoWIG in a separate environment that will only be used for the wrappers generation.
If the problem persits, please refers to the StatisKit documentation [http://statiskit.rtfd.io] concerning the configuration of the development environment.

Installation from source code

For installing AutoWIG from source code, please refers to the StatisKit documentation [https://statiskit.rtfd.io] concerning the configuration of the development environment.

User guide

Note

In this section, we introduce wrapping problems and how AutoWIG aims at minimize developers effort.
Basic concepts and conventions are introduced.

Problem setting

Consider a scientist who has designed multiple C++ libraries for statistical analysis.
He would like to distribute his libraries and decide to make them available in Python in order to reach a public of statisticians but also less expert scientists such as biologists.
Yet, he is not interested in becoming an expert in C++/Python wrapping, even if it exists classical approaches consisting in writing wrappers with SWIG [Bea03] or Boost.Python [AGK03].
Moreover, he would have serious difficulties to maintain the wrappers, since this semi-automatic process is time consuming and error prone.
Instead, he would like to automate the process of generating wrappers in sync with his evolving C++ libraries.
That’s what the AutoWIG software aspires to achieve.

Automating the process

Building such a system entails achieving some minimal features:

	C++ parsing

	In order to automatically expose C++ components in Python, the system requires parsing full legacy code implementing the last C++ standard.
It has also to represent C++ constructs in Python, like namespaces, enumerators, enumerations, variables, functions, classes or aliases.

	Documentation

	The documentation of C++ components has to be associated automatically to their corresponding Python components in order to reduce the redundancy and to keep it up-to-date in only one place.

	Pythonic interface

	To respect the Python philosophy, C++ language patterns need to be consistently translated into Python.
Some syntax or design patterns in C++ code are specific and need to be adapted in order to obtain a functional Python package.
Note that this is particularly sensible for C++ operators (e.g. (), <, []) and corresponding Python special functions (e.g. __call__, __lt__, __getitem__, __setitem__) or for object serialization.

	Memory management

	C++ libraries expose in their interfaces either raw pointers, shared pointers or references, while Python handles memory allocation and garbage collection automatically.
The concepts of pointer or references are thus not meaningful in Python.
These language differences entail several problems in the memory management of C++ components into Python.
A special attention is therefore required for dealing with references (&) and pointers (*) that are highly used in C++.

	Error management

	C++ exceptions need to be consistently managed in Python.
Python doesn’t have the necessary equipment to properly unwind the C++ stack when exception are thrown.
It is therefore important to make sure that exceptions thrown by C++ code do not pass into the Python interpreter core.
All C++ exceptions thrown by wrappers must therefore be translated into Python errors.
This translation must preserve exception names and contents in order to raise informative Python errors.

	Dependency management between components

	The management of multiple dependencies between C++ libraries with Python bindings is required at run-time from Python.
C++ libraries tends to have dependencies.
For instance the C++ Standard Template Library containers [PLMS00] are used in many C++ libraries (e.g std::vector, std::set).
For such cases, it doesn’t seem relevant that every wrapped C++ library contains wrappers for usual STL containers (e.g. std::vector< double >, std::set< int >).
Moreover, loading in the Python interpreter multiple compiled libraries sharing different wrappers from same C++ components could lead to serious side effects.
It is therefore required that dependencies across different library bindings can be handled automatically.

Examples

Note

In the following section, we present some examples using AutoWIG in order to emphasize particular aspects of the wrapping process.
This examples can be executed on-line on a Binder server [http://mybinder.org/repo/statiskit/autowig].
They can be found in the doc/examples directory and are recognizable by their *.ipynb extension.

Warning

Binder does not provide webhooks that could allow to rebuild the Docker image at each changes.
In order to able to run these examples, it is possible that you need to rebuild the Docker image.
For this, go to the Binder status page [http://mybinder.org/status/statiskit/autowig] and click on on the rebuild button.

Here are the pre-executed examples:

	Wrapping a basic library

	Wrapping a subset of a very large library

	Wrapping a template library

Wrapping a basic library

We here aim at presenting the interactive wrapping workflow. For the
sake of simplicity, we consider a basic example of C++ library.

First, import AutoWIG.

In []:

import autowig

Then, to install and compile the C++ library we use available
Conda recipes.

In []:

!conda remove libbasic -y
!conda build -q basic/conda/libbasic -c statiskit
!conda install -y -q libbasic --use-local -c statiskit

Once the headers have been installed in the system, we parse them with
relevant compilation flags.

In []:

%%time
import sys
asg = autowig.AbstractSemanticGraph()
asg = autowig.parser(asg, [sys.prefix + '/include/basic/overload.h',
 sys.prefix + '/include/basic/binomial.h'],
 ['-x', 'c++', '-std=c++11'],
 silent = True)

Since most of AutoWIG guidelines are respected, the default
controller implementation is suitable.

In []:

%%time
autowig.controller.plugin = 'default'
asg = autowig.controller(asg)

In order to wrap the library we need to select the
boost_python_internal generator implementation.

In []:

%%time
autowig.generator.plugin = 'boost_python_internal'
wrappers = autowig.generator(asg,
 module = 'basic/src/py/_basic.cpp',
 decorator = 'basic/src/py/basic/_basic.py',
 prefix = 'wrapper_')

The wrappers are only generated in-memory. It is therefore needed to
write them on the disk to complete the process.

In []:

%%time
wrappers.write()

Here is an example of the generated wrappers. We here present the
wrappers for the BinomialDistribution class.

In []:

!pygmentize basic/src/py/wrapper_4046a8421fe9587c9dfbc97778162c7d.cpp

Once the wrappers are written on disk, we need to compile and install
the Python bindings.

In []:

!conda build -q basic/conda/python-basic -c statiskit
!conda install -y -q python-basic --use-local -c statiskit --force

Finally, we can hereafter use the C++ library in the Python
interpreter.

In []:

import basic
binomial = basic.BinomialDistribution(1, .5)
binomial

In []:

binomial.pmf(0)

In []:

binomial.pmf(1)

In []:

binomial.n = 0
binomial

In []:

binomial.pmf(0)

In []:

try:
 binomial.set_pi(1.1)
except basic.ProbabilityError as error:
 print error.message
else:
 raise Exception('A `basic.ProbabilityError` should have been raise')

Wrapping a subset of a very large library

Sometimes, for a very large library, only a subset of available C++
components is useful for end-users. Wrapping such libraries therefore
requires AutoWIG to be able to consider only a subset of the C++
components during the Generate step. The Clang library is a
complete C/C++ compiler. Clang is a great tool, but its stable
Python interface (i.e. libclang) is lacking some useful features
that are needed by AutoWIG. In particular, class template
specializations are not available in the abstract syntax tree.
Fortunately, most of the classes that would be needed during the
traversal of the C++ abstract syntax tree are not template
specializations. We therefore proposed to bootstrap the Clang
Python bindings using the libclang parser of AutoWIG. This
new Clang Python interface is called PyClangLite and is able
to parse class template specializations. As for libclang, this
interface is proposed only for a subset of the Clang library
sufficient enough for proposing the new pyclanglite parser.

This repository already has wrappers, we therefore need to remove them.

In []:

!git clone https://github.com/StatisKit/ClangLite ClangLite
!git -C ClangLite checkout a13322e37683012ca346595e88abc48ac591112c

In []:

from path import Path
import shutil
srcdir = Path('ClangLite')/'src'/'py'
for wrapper in srcdir.walkfiles('*.cpp'):
 wrapper.unlink()
for wrapper in srcdir.walkfiles('*.h'):
 wrapper.unlink()
wrapper = srcdir/'clanglite'/'_clanglite.py'
if wrapper.exists():
 wrapper.unlink()
blddir = srcdir.parent.parent/'build'
if blddir.exists():
 shutil.rmtree(srcdir.parent.parent/'build')

In addition to the Clang libraries, the ClangLite library is
needed in order to have access to some functionalities. The tool.h
header of this ClangLite library includes all necessary Clang
headers. This library is installed using the SCons cpp target.

In []:

!conda remove libclanglite -y
!conda build ClangLite/conda/libclanglite -c statiskit -c conda-forge
!conda install -y libclanglite --use-local -c statiskit -c conda-forge

Once these preliminaries done, we can proceed to the actual generation
of wrappers for the Clang library. For this, we import AutoWIG
and create an empty Abstract Semantic Graph (ASG).

In []:

import autowig
asg = autowig.AbstractSemanticGraph()

We then parse the tool.h header of the ClangLite library with
relevant compilation flags.

In []:

%%time
import sys
prefix = Path(sys.prefix).abspath()
autowig.parser.plugin = 'libclang'
asg = autowig.parser(asg, [prefix/'include'/'clanglite'/'tool.h'],
 flags = ['-x', 'c++', '-std=c++11',
 '-D__STDC_LIMIT_MACROS',
 '-D__STDC_CONSTANT_MACROS',
 '-I' + str((prefix/'include').abspath())],
 libpath = prefix/'lib'/'libclang.so',
 bootstrap = False,
 silent = True)

Since most of AutoWIG guidelines are respected in the Clang
library, the default controller implementation could be
suitable. Nevertheless, we need to force some C++ components to be
wrapped or not. We therefore implements a new controller.

In []:

def clanglite_controller(asg):

 for node in asg['::boost::python'].classes(nested = True):
 node.is_copyable = True

 for node in asg.classes():
 node.boost_python_export = False
 for node in asg.functions(free=True):
 node.boost_python_export = False
 for node in asg.variables(free = True):
 node.boost_python_export = False
 for node in asg.enumerations():
 node.boost_python_export = False
 for node in asg.enumerators():
 if node.parent.boost_python_export:
 node.boost_python_export = False
 for node in asg.typedefs():
 node.boost_python_export = False

 from autowig.default_controller import refactoring
 asg = refactoring(asg)

 if autowig.parser.plugin == 'libclang':
 for fct in asg.functions(free=False):
 asg._nodes[fct._node]['_is_virtual'] = False
 asg._nodes[fct._node]['_is_pure'] = False
 asg['class ::clang::QualType'].is_abstract = False
 asg['class ::clang::QualType'].is_copyable = True
 asg['class ::llvm::StringRef'].is_abstract = False
 asg['class ::llvm::StringRef'].is_copyable = True
 asg['class ::clang::FileID'].is_abstract = False
 asg['class ::clang::FileID'].is_copyable = True
 asg['class ::clang::SourceLocation'].is_abstract = False
 asg['class ::clang::SourceLocation'].is_copyable = True
 asg['class ::clang::TemplateArgument'].is_abstract = False
 asg['class ::clang::TemplateArgument'].is_copyable = True
 for cls in ['::clang::FriendDecl', '::clang::CapturedDecl', '::clang::OMPThreadPrivateDecl',
 '::clang::NonTypeTemplateParmDecl', '::clang::TemplateArgumentList', '::clang::ImportDecl',
 '::clang::TemplateTemplateParmDecl', '::clang::CapturedDecl', '::clang::OMPThreadPrivateDecl',
 '::clang::NonTypeTemplateParmDecl', '::clang::TemplateArgumentList', '::clang::ImportDecl',
 '::clang::TemplateTemplateParmDecl']:
 asg['class ' + cls].is_abstract = False

 asg['class ::boost::python::api::object'].boost_python_export = True
 asg['class ::boost::python::list'].boost_python_export = True
 asg['class ::boost::python::str'].boost_python_export = True

 subset = []
 classes = [asg['class ::clang::QualType'],
 asg['class ::clang::Type'],
 asg['class ::clang::Decl']]
 subset += classes
 for cls in classes:
 subset += cls.subclasses(recursive=True)
 for cls in subset:
 if not cls.globalname.strip('class ') in ['::clang::QualType',
 '::llvm::StringRef',
 '::clang::FileID',
 '::clang::SourceLocation',
 '::clang::TemplateArgument',
 '::clang::FriendDecl',
 '::clang::CapturedDecl',
 '::clang::OMPThreadPrivateDecl',
 '::clang::NonTypeTemplateParmDecl',
 '::clang::TemplateArgumentList',
 '::clang::ImportDecl',
 '::clang::TemplateTemplateParmDecl']:
 cls.is_copyable = False
 else:
 cls.is_copyable = True
 subset.append(asg['class ::llvm::StringRef'])

 subset.append(asg['class ::clang::ASTUnit'])
 subset.append(asg['class ::clang::ASTContext'])
 subset.append(asg['class ::clang::SourceManager'])
 subset.append(asg['class ::clang::FileID'])

 subset.append(asg['class ::clang::SourceLocation'])

 subset.append(asg['class ::clang::CXXBaseSpecifier'])
 subset.append(asg['class ::clang::DeclContext'])
 subset.append(asg['class ::clang::TemplateArgument'])

 subset.append(asg['class ::clang::TemplateArgumentList'])
 subset.append(asg['enum ::clang::Type::TypeClass'])
 subset.append(asg['enum ::clang::AccessSpecifier'])
 subset.append(asg['enum ::clang::LinkageSpecDecl::LanguageIDs'])
 subset.append(asg['enum ::clang::BuiltinType::Kind'])
 subset.append(asg['enum ::clang::TemplateArgument::ArgKind'])
 subset.append(asg['enum ::clang::Decl::Kind'])
 # subset.extend(asg['::boost::python'].classes(nested = True))
 # subset.extend(asg['::boost::python'].enumerations(nested = True))
 subset.extend(asg.nodes('::clanglite::build_ast_from_code_with_args'))

 for node in subset:
 node.boost_python_export = True

 for fct in asg['::clanglite'].functions():
 if not fct.localname == 'build_ast_from_code_with_args':
 fct.parent = fct.parameters[0].qualified_type.desugared_type.unqualified_type
 fct.boost_python_export = True

 for mtd in asg['class ::clang::ASTContext'].methods(pattern='.*getSourceManager.*'):
 if mtd.return_type.globalname == 'class ::clang::SourceManager &':
 mtd.boost_python_export = True
 break

 if autowig.parser.plugin == 'libclang':
 for node in (asg.functions(pattern='.*(llvm|clang).*_(begin|end)')
 + asg.functions(pattern='::clang::CXXRecordDecl::getCaptureFields')
 + asg.functions(pattern='.*(llvm|clang).*getNameAsString')
 + asg.nodes('::clang::NamedDecl::getQualifiedNameAsString')
 + asg.functions(pattern='.*::clang::ObjCProtocolDecl')
 + asg.nodes('::clang::ObjCProtocolDecl::collectInheritedProtocolProperties')
 + asg.nodes('::clang::ASTUnit::LoadFromASTFile')
 + asg.nodes('::clang::ASTUnit::getCachedCompletionTypes')
 + asg.nodes('::clang::ASTUnit::getBufferForFile')
 + asg.nodes('::clang::CXXRecordDecl::getCaptureFields')
 + asg.nodes('::clang::ASTContext::SectionInfos')
 + asg.nodes('::clang::ASTContext::getAllocator')
 + asg.nodes('::clang::ASTContext::getObjCEncoding.*')
 + asg.nodes('::clang::ASTContext::getAllocator')
 + asg.nodes('::clang::QualType::getAsString')
 + asg.nodes('::clang::SourceLocation::printToString')
 + asg['class ::llvm::StringRef'].methods()):
 node.boost_python_export = False

 if autowig.parser.plugin == 'clanglite':
 for mtd in asg['class ::clang::Decl'].methods():
 if mtd.localname == 'hasAttr':
 mtd.boost_python_export = False

 import sys
 from path import path
 for header in (path(sys.prefix)/'include'/'clang').walkfiles('*.h'):
 asg[header.abspath()].is_external_dependency = False

 return asg

This controller is then dynamically registered and used on the ASG.

In []:

%%time
autowig.controller['clanglite'] = clanglite_controller
autowig.controller.plugin = 'clanglite'
asg = autowig.controller(asg)

In order to wrap a subset of the Clang library, we need to select
the boost_python_internal generator implementation.

In []:

%%time
autowig.generator.plugin = 'boost_python_pattern'
wrappers = autowig.generator(asg,
 module = srcdir/'_clanglite.cpp',
 decorator = srcdir/'clanglite'/'_clanglite.py',
 closure = False)

The wrappers are only generated in-memory. It is therefore needed to
write them on the disk to complete the process.

In []:

%%time
wrappers.write()

Here is an example of the generated wrappers. We here present the
wrappers for the clang::Decl class.

In []:

!pygmentize ClangLite/src/py/wrapper_a6aedb4654a55a40aeecf4b1dc5fcc98.cpp

Once the wrappers are written on the disk, the bingings must be compiled
and installed. This can be done using the SCons py target.

In []:

!conda build ClangLite/conda/python-clanglite -c statiskit -c conda-forge
!conda install -y python-clanglite --use-local -c statiskit -c conda-forge

In []:

import autowig
from clanglite.autowig_parser import autowig_parser
autowig.parser['clanglite'] = autowig_parser
autowig.parser.plugin = 'clanglite'
from path import Path
import sys

for wrapper in srcdir.walkfiles('*.cpp'):
 wrapper.unlink()
for wrapper in srcdir.walkfiles('*.h'):
 wrapper.unlink()
wrapper = srcdir/'clanglite'/'_clanglite.py'
if wrapper.exists():
 wrapper.unlink()

prefix = Path(sys.prefix).abspath()

asgbis = autowig.AbstractSemanticGraph()

asgbis = autowig.parser(asgbis, [prefix/'include'/'clanglite'/'tool.h'],
 flags = ['-x', 'c++', '-std=c++11',
 '-D__STDC_CONSTANT_MACROS',
 '-D__STDC_FORMAT_MACROS',
 '-D__STDC_LIMIT_MACROS',
 '-I' + str((prefix/'include').abspath()),
 '-I' + str((prefix/'include'/'python2.7').abspath())],
 bootstrap = False,
 silent = True)

autowig.controller['clanglite'] = clanglite_controller
autowig.controller.plugin = 'clanglite'
asgbis = autowig.controller(asgbis)

autowig.generator.plugin = 'boost_python_pattern'
wrappers = autowig.generator(asgbis,
 module = srcdir/'_clanglite.cpp',
 decorator = srcdir/'clanglite'/'_clanglite.py',
 closure = False)

wrappers.write()

In []:

!conda remove python-clanglite -y
!conda build ClangLite/conda/python-clanglite -c statiskit -c conda-forge
!conda install -y python-clanglite --use-local -c statiskit -c conda-forge

Wrapping a template library

A template library is a library where there are only template classes
that can be instantiated. Wrapping such libraries therefore requires
AutoWIG to be able to consider various C++ template classes
instantiations during the Parse step. It is therefore required to
install the pyclanglite parser.

The Standard Template Library (STL) library is a C++ library that
provides a set of common C++ template classes such as containers and
associative arrays. These classes can be used with any built-in or
user-defined type that supports some elementary operations (e.g.
copying, assignment). It is divided in four components called
algorithms, containers, functional and iterators. STL containers
(e.g. std::vector, std::set) are used in many C++ libraries.
In such a case, it does not seem relevant that every wrapped C++
library contains wrappers for usual STL containers (e.g.
std::vector< double >, std::set< int >). We therefore proposed
Python bindings for sequence containers (i.e. pair, array,
vector, deque, forward_list and list of the std
namespace) and associative containers (set, multiset, map,
multimap, unordered_set, unordered_multiset,
unordered_map and unordered_multimap of the std namespace).
These template instantiations are done for C++ fundamental types
(bool, signed char, unsigned char, char, wchar_t,
int (with sign modifiers signed and signed combined or not
with size modifiers short, long and long long), float,
double, long double) and strings (string, wstring of the
std namespace). For ordered associative containers both
std::less and std::greater comparators are used. We here only
illustrate the procedure on the std::vector template class. For the
complete procedure refers to the AutoWIG.py file situed at the root
of the PySTL repository [https://github.com/StatisKit/PySTL].

In []:

!git clone https://github.com/StatisKit/STL STL
!git -C STL checkout b9569c67ebc59482dc99a8fa11aa685faebc981d

Then, to install and compile the C++ library we use available
Conda recipes.

In []:

!conda build -q STL/conda/libstatiskit_stl -c statiskit
!conda install -y -q libstatiskit_stl --use-local -c statiskit

As presented below, in order to wrap a template library, the user needs
to write headers containing aliases for desired template class
instantiations.

In []:

!pygmentize STL/src/cpp/STL.h

Once these preliminaries done, we can proceed to the actual generation
of wrappers for the PySTL library. For this, we import AutoWIG
and create an empty Abstract Semantic Graph (ASG).

We need then to install the C++ headers. This is done using the
cpp target in SCons.

In []:

!scons cpp -C STL

Once the headers habe been installed in the system, we parse headers
with relevant compilation flags.

In []:

!scons autowig -c -C STL
!scons autowig -C STL

Here is an example of the generated wrappers. We here present the
wrappers for the std::vector< int > class.

In []:

!pygmentize STL/src/py/wrapper/wrapper_6b9ae5eac40858c9a0f5e6e21c15d1d3.cpp

Once the wrappers are written on disk, we need to compile and install
the Python bindings.

In []:

!conda build STL/conda/python-statiskit_stl -c statiskit
!conda install -y python-statiskit_stl --use-local -c statiskit --force

Finally, we can hereafter use the C++ library in the Python
interpreter.

In []:

from statiskit.stl import VectorInt
v = VectorInt()
v.push_back(-1)
v.push_back(0)
v.push_back(1)
v

In []:

list(v)

In []:

v[0]

In []:

v[0] = -2
v[0]

In []:

VectorInt([0, 1])

Frequently Asked Questions

Note

Frequently asked questions about the project and contributing.

	How to use AutoWIG on Windows or MacOS ?

How to use AutoWIG on Windows or MacOS ?

Currently, AutoWIG binaries for Windows or MacOs X are proposed and can be installed using Conda but are not guaranteed to be working perfectly.
However, we provide a Docker image that can be used on these operating systems.
Please follow the Test it with Docker procedure.

Index

CeCILL FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result
of discussions between its authors in order to ensure compliance with
the two main principles guiding its drafting:

	firstly, compliance with the principles governing the distribution
of Free Software: access to source code, broad rights granted to users,

	secondly, the election of a governing law, French law, with which it
is conformant, both as regards the law of torts and intellectual
property law, and the protection that it offers to both authors and
holders of the economic rights over software.

The authors of the CeCILL (for Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre])
license are:

	Commissariat à l’énergie atomique et aux énergies alternatives (CEA)

	a public scientific, technical and industrial research establishment,
having its principal place of business at 25 rue Leblanc, immeuble Le
Ponant D, 75015 Paris, France.

	Centre National de la Recherche Scientifique (CNRS)

	a public scientific and technological establishment, having its principal
place of business at 3 rue Michel-Ange, 75794 Paris cedex 16, France.

	Institut National de Recherche en Informatique et en Automatique (Inria)

	a public scientific and technological establishment, having its
principal place of business at Domaine de Voluceau, Rocquencourt, BP105,
78153 Le Chesnay cedex, France.

Preamble

The purpose of this Free Software license agreement is to grant users
the right to modify and redistribute the software governed by this
license within the framework of an open source distribution model.
The exercising of this right is conditional upon certain obligations for
users so as to preserve this status for all subsequent redistributions.
In consideration of access to the source code and the rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software’s author, the holder of the
economic rights, and the successive licensors only have limited liability.
In this respect, the risks associated with loading, using, modifying
and/or developing or reproducing the software by the user are brought to
the user’s attention, given its Free Software status, which may make it
complicated to use, with the result that its use is reserved for
developers and experienced professionals having in-depth computer
knowledge. Users are therefore encouraged to load and test the
suitability of the software as regards their requirements in conditions
enabling the security of their systems and/or data to be ensured and,
more generally, to use and operate it in the same conditions of
security. This Agreement may be freely reproduced and published,
provided it is not altered, and that no provisions are either added or
removed herefrom.
This Agreement may apply to any or all software for which the holder of
the economic rights decides to submit the use thereof to its provisions.
Frequently asked questions can be found on the official website of the
CeCILL licenses family (http://www.cecill.info/index.en.html) for any
necessary clarification.

Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions
commence with a capital letter, they shall have the following meaning:

	Agreement

	means this license agreement, and its possible subsequent versions and annexes.

	Software

	means the software in its Object Code and/or Source Code form
and, where applicable, its documentation, “as is” when the Licensee
accepts the Agreement.

	Initial Software

	means the Software in its Source Code and possibly its
Object Code form and, where applicable, its documentation, “as is” when
it is first distributed under the terms and conditions of the Agreement.

	Modified Software

	means the Software modified by at least one Contribution.

	Source Code

	means all the Software’s instructions and program lines to
which access is required so as to modify the Software.

	Object Code

	means the binary files originating from the compilation of
the Source Code.

	Holder

	means the holder(s) of the economic rights over the Initial
Software.

	Licensee

	means the Software user(s) having accepted the Agreement.

	Contributor

	means a Licensee having made at least one Contribution.

	Licensor

	means the Holder, or any other individual or legal entity, who
distributes the Software under the Agreement.

	Contribution

	means any or all modifications, corrections, translations,
adaptations and/or new functions integrated into the Software by any or
all Contributors, as well as any or all Internal Modules.

	Module

	means a set of sources files including their documentation that
enables supplementary functions or services in addition to those offered
by the Software.

	External Module

	means any or all Modules, not derived from the
Software, so that this Module and the Software run in separate address
spaces, with one calling the other when they are run.

	Internal Module

	means any or all Module, connected to the Software so
that they both execute in the same address space.

	GNU GPL

	means the GNU General Public License version 2 or any
subsequent version, as published by the Free Software Foundation Inc.

	GNU Affero GPL

	means the GNU Affero General Public License version 3 or
any subsequent version, as published by the Free Software Foundation Inc.

	EUPL

	means the European Union Public License version 1.1 or any
subsequent version, as published by the European Commission.

	Parties

	mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the
Licensee of a non-exclusive, transferable and worldwide license for the
Software as set forth in Article 5 <#scope> hereinafter for the whole
term of the protection granted by the rights over said Software.

Article 3 - ACCEPTANCE

3.1

The Licensee shall be deemed as having accepted the terms and
conditions of this Agreement upon the occurrence of the first of the
following events:

	loading the Software by any or all means, notably, by
downloading from a remote server, or by loading from a physical medium;

	the first time the Licensee exercises any of the rights granted
hereunder.

3.2

One copy of the Agreement, containing a notice relating to the
characteristics of the Software, to the limited warranty, and to the
fact that its use is restricted to experienced users has been provided
to the Licensee prior to its acceptance as set forth in Article 3.1
<#accepting> hereinabove, and the Licensee hereby acknowledges that it
has read and understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by
the Licensee as set forth in Article 3.1 <#accepting>.

4.2 TERM

The Agreement shall remain in force for the entire legal term of
protection of the economic rights over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following
rights over the Software for any or all use, and for the term of the
Agreement, on the basis of the terms and conditions set forth hereinafter.
Besides, if the Licensor owns or comes to own one or more patents
protecting all or part of the functions of the Software or of its
components, the Licensor undertakes not to enforce the rights granted by
these patents against successive Licensees using, exploiting or
modifying the Software. If these patents are transferred, the Licensor
undertakes to have the transferees subscribe to the obligations set
forth in this paragraph.

5.1 RIGHT OF USE

The Licensee is authorized to use the Software, without any limitation
as to its fields of application, with it being hereinafter specified
that this comprises:

	permanent or temporary reproduction of all or part of the Software
by any or all means and in any or all form.

	loading, displaying, running, or storing the Software on any or all
medium.

	entitlement to observe, study or test its operation so as to
determine the ideas and principles behind any or all constituent
elements of said Software. This shall apply when the Licensee
carries out any or all loading, displaying, running, transmission or
storage operation as regards the Software, that it is entitled to
carry out hereunder.

5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS

The right to make Contributions includes the right to translate, adapt,
arrange, or make any or all modifications to the Software, and the right
to reproduce the resulting software.
The Licensee is authorized to make any or all Contributions to the
Software provided that it includes an explicit notice that it is the
author of said Contribution and indicates the date of the creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish,
transmit and communicate the Software to the general public on any or
all medium, and by any or all means, and the right to market, either in
consideration of a fee, or free of charge, one or more copies of the
Software by any means.
The Licensee is further authorized to distribute copies of the modified
or unmodified Software to third parties according to the terms and
conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in
Source Code or Object Code form, provided that said distribution
complies with all the provisions of the Agreement and is accompanied by:

	a copy of the Agreement,

	a notice relating to the limitation of both the Licensor’s warranty
and liability as set forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is
redistributed, the Licensee allows effective access to the full Source
Code of the Software for a period of at least three years from the
distribution of the Software, it being understood that the additional
acquisition cost of the Source Code shall not exceed the cost of the
data transfer.

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

When the Licensee makes a Contribution to the Software, the terms and
conditions for the distribution of the resulting Modified Software
become subject to all the provisions of this Agreement.
The Licensee is authorized to distribute the Modified Software, in
source code or object code form, provided that said distribution
complies with all the provisions of the Agreement and is accompanied by:

	a copy of the Agreement,

	a notice relating to the limitation of both the Licensor’s warranty
and liability as set forth in Articles 8 and 9, and, in the event
that only the object code of the Modified Software is redistributed,

	a note stating the conditions of effective access to the full source
code of the Modified Software for a period of at least three years
from the distribution of the Modified Software, it being understood
that the additional acquisition cost of the source code shall not
exceed the cost of the data transfer.

5.3.3 DISTRIBUTION OF EXTERNAL MODULES

When the Licensee has developed an External Module, the terms and
conditions of this Agreement do not apply to said External Module, that
may be distributed under a separate license agreement.

5.3.4 COMPATIBILITY WITH OTHER LICENSES

The Licensee can include a code that is subject to the provisions of one
of the versions of the GNU GPL, GNU Affero GPL and/or EUPL in the
Modified or unmodified Software, and distribute that entire code under
the terms of the same version of the GNU GPL, GNU Affero GPL and/or EUPL.
The Licensee can include the Modified or unmodified Software in a code
that is subject to the provisions of one of the versions of the GNU GPL,
GNU Affero GPL and/or EUPL and distribute that entire code under the
terms of the same version of the GNU GPL, GNU Affero GPL and/or EUPL.

Article 6 - INTELLECTUAL PROPERTY

6.1 OVER THE INITIAL SOFTWARE

The Holder owns the economic rights over the Initial Software. Any or
all use of the Initial Software is subject to compliance with the terms
and conditions under which the Holder has elected to distribute its work
and no one shall be entitled to modify the terms and conditions for the
distribution of said Initial Software.
The Holder undertakes that the Initial Software will remain ruled at
least by this Agreement, for the duration set forth in Article 4.2 <#term>.

6.2 OVER THE CONTRIBUTIONS

The Licensee who develops a Contribution is the owner of the
intellectual property rights over this Contribution as defined by
applicable law.

6.3 OVER THE EXTERNAL MODULES

The Licensee who develops an External Module is the owner of the
intellectual property rights over this External Module as defined by
applicable law and is free to choose the type of agreement that shall
govern its distribution.

6.4 JOINT PROVISIONS

The Licensee expressly undertakes:

	not to remove, or modify, in any manner, the intellectual property
notices attached to the Software;

	to reproduce said notices, in an identical manner, in the copies of
the Software modified or not.

The Licensee undertakes not to directly or indirectly infringe the
intellectual property rights on the Software of the Holder and/or
Contributors, and to take, where applicable, vis-à-vis its staff, any
and all measures required to ensure respect of said intellectual
property rights of the Holder and/or Contributors.

Article 7 - RELATED SERVICES

7.1

Under no circumstances shall the Agreement oblige the Licensor to
provide technical assistance or maintenance services for the Software.
However, the Licensor is entitled to offer this type of services. The
terms and conditions of such technical assistance, and/or such
maintenance, shall be set forth in a separate instrument. Only the
Licensor offering said maintenance and/or technical assistance services
shall incur liability therefor.

7.2

Similarly, any Licensor is entitled to offer to its licensees, under
its sole responsibility, a warranty, that shall only be binding upon
itself, for the redistribution of the Software and/or the Modified
Software, under terms and conditions that it is free to decide. Said
warranty, and the financial terms and conditions of its application,
shall be subject of a separate instrument executed between the Licensor
and the Licensee.

Article 8 - LIABILITY

8.1

Subject to the provisions of Article 8.2, the Licensee shall be
entitled to claim compensation for any direct loss it may have suffered
from the Software as a result of a fault on the part of the relevant
Licensor, subject to providing evidence thereof.

8.2

The Licensor’s liability is limited to the commitments made under
this Agreement and shall not be incurred as a result of in particular:
(i) loss due the Licensee’s total or partial failure to fulfill its
obligations, (ii) direct or consequential loss that is suffered by the
Licensee due to the use or performance of the Software, and (iii) more
generally, any consequential loss. In particular the Parties expressly
agree that any or all pecuniary or business loss (i.e. loss of data,
loss of profits, operating loss, loss of customers or orders,
opportunity cost, any disturbance to business activities) or any or all
legal proceedings instituted against the Licensee by a third party,
shall constitute consequential loss and shall not provide entitlement to
any or all compensation from the Licensor.

Article 9 - WARRANTY

9.1

The Licensee acknowledges that the scientific and technical
state-of-the-art when the Software was distributed did not enable all
possible uses to be tested and verified, nor for the presence of
possible defects to be detected. In this respect, the Licensee’s
attention has been drawn to the risks associated with loading, using,
modifying and/or developing and reproducing the Software which are
reserved for experienced users.
The Licensee shall be responsible for verifying, by any or all means,
the suitability of the product for its requirements, its good working
order, and for ensuring that it shall not cause damage to either persons
or properties.

9.2

The Licensor hereby represents, in good faith, that it is entitled
to grant all the rights over the Software (including in particular the
rights set forth in Article 5 <#scope>).

9.3

The Licensee acknowledges that the Software is supplied “as is” by
the Licensor without any other express or tacit warranty, other than
that provided for in Article 9.2 <#good-faith> and, in particular,
without any warranty as to its commercial value, its secured, safe,
innovative or relevant nature.
Specifically, the Licensor does not warrant that the Software is free
from any error, that it will operate without interruption, that it will
be compatible with the Licensee’s own equipment and software
configuration, nor that it will meet the Licensee’s requirements.

9.4

The Licensor does not either expressly or tacitly warrant that the
Software does not infringe any third party intellectual property right
relating to a patent, software or any other property right. Therefore,
the Licensor disclaims any and all liability towards the Licensee
arising out of any or all proceedings for infringement that may be
instituted in respect of the use, modification and redistribution of the
Software. Nevertheless, should such proceedings be instituted against
the Licensee, the Licensor shall provide it with technical and legal
expertise for its defense. Such technical and legal expertise shall be
decided on a case-by-case basis between the relevant Licensor and the
Licensee pursuant to a memorandum of understanding. The Licensor
disclaims any and all liability as regards the Licensee’s use of the
name of the Software. No warranty is given as regards the existence of
prior rights over the name of the Software or as regards the existence
of a trademark.

Article 10 - TERMINATION

10.1

In the event of a breach by the Licensee of its obligations
hereunder, the Licensor may automatically terminate this Agreement
thirty (30) days after notice has been sent to the Licensee and has
remained ineffective.

10.2

A Licensee whose Agreement is terminated shall no longer be
authorized to use, modify or distribute the Software. However, any
licenses that it may have granted prior to termination of the Agreement
shall remain valid subject to their having been granted in compliance
with the terms and conditions hereof.

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to
perform the Agreement, that may be attributable to an event of force
majeure, an act of God or an outside cause, such as defective
functioning or interruptions of the electricity or telecommunications
networks, network paralysis following a virus attack, intervention by
government authorities, natural disasters, water damage, earthquakes,
fire, explosions, strikes and labor unrest, war, etc.

11.2

Any failure by either Party, on one or more occasions, to invoke
one or more of the provisions hereof, shall under no circumstances be
interpreted as being a waiver by the interested Party of its right to
invoke said provision(s) subsequently.

11.3

The Agreement cancels and replaces any or all previous agreements,
whether written or oral, between the Parties and having the same
purpose, and constitutes the entirety of the agreement between said
Parties concerning said purpose. No supplement or modification to the
terms and conditions hereof shall be effective as between the Parties
unless it is made in writing and signed by their duly authorized
representatives.

11.4

In the event that one or more of the provisions hereof were to
conflict with a current or future applicable act or legislative text,
said act or legislative text shall prevail, and the Parties shall make
the necessary amendments so as to comply with said act or legislative
text. All other provisions shall remain effective. Similarly, invalidity
of a provision of the Agreement, for any reason whatsoever, shall not
cause the Agreement as a whole to be invalid.

11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions
are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1

Any person is authorized to duplicate and distribute copies of this
Agreement.
12.2
~~~~
So as to ensure coherence, the wording of this Agreement is
protected and may only be modified by the authors of the License, who
reserve the right to periodically publish updates or new versions of the
Agreement, each with a separate number. These subsequent versions may
address new issues encountered by Free Software.
12.3
~~~~
Any Software distributed under a given version of the Agreement may
only be subsequently distributed under the same version of the Agreement
or a subsequent version, subject to the provisions of Article 5.3.4
<#compatibility>.

Article 13 - GOVERNING LAW AND JURISDICTION

13.1

The Agreement is governed by French law. The Parties agree to
endeavor to seek an amicable solution to any disagreements or disputes
that may arise during the performance of the Agreement.

13.2

Failing an amicable solution within two (2) months as from their
occurrence, and unless emergency proceedings are necessary, the
disagreements or disputes shall be referred to the Paris Courts having
jurisdiction, by the more diligent Party.

Version 2.1 dated 2013-06-21

Contributing

Note

Information on how to contribute.

Warning

Section under construction.

References

	[AGK03]	David Abrahams and Ralf

 API

API

Note

The exact API of all functions and classes, as given by the docstrings.
The API documents expected types and allowed features for all functions, and all parameters available for the algorithms.

Warning

Section under construction.

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		AutoWIG: Automatic Wrapper and Interface Generator

 		Test it with Docker

 		Installation from binaries

 		Installation from source code

 		User guide

 		Problem setting

 		Automating the process

 		Examples

 		Wrapping a basic library

 		Wrapping a subset of a very large library

 		Wrapping a template library

 		Frequently Asked Questions

 		How to use AutoWIG on Windows or MacOS ?

